土壌微生物を用いた持続農業の調査

生命環境科学研究科·応用生命科学専攻 准教授 Andre Freire Cruz

キーワード:メタゲノム解析、土壌病原菌、菌根菌、細菌、薬剤耐性菌、バイオ炭

【研究概要】

本研究は、持続可能な果樹および畑作物の生産を実現するため、土 壌微生物群集の多様性と機能、ならびにそれに影響を与える環境因 子の解明を目的とする。特に、果樹と密接に関わるアーバスキュ ラー菌根(AM)菌が、乾燥や塩分などの非生物的ストレスの緩和 に寄与することを、カンキツ、ブドウ、パパイヤ等を用いて実証し た。さらに、ウメの白紋羽病の発病と関係する細菌の同定を通じて、 病害抵抗性に関連する土壌微生物の機能的側面を明らかにした。バ イオ炭の施用により、土壌化学性 (pH、CEC、有機態炭素量など) が改善されるとともに、微生物群集構造や代表的な酵素活性(脱水 素酵素、ホスファターゼ等)にポジティブな変化が観察された。こ れらの効果は、メタゲノム解析を通じた微生物の機能的遺伝子群の 変動とも相関しており、土壌微生物機能の向上が示唆される。一方、 畜産農場における薬剤耐性菌の拡散リスクについて、ウガンダのト リ・ブタ・ウシ飼養施設の土壌から耐性遺伝子を検出し、抗菌剤使 用と遺伝子出現頻度との強い関連性を確認した。また、混作体系下 におけるAM菌の菌糸ネットワークを介した養分移動、果実表面の 微生物群集構造と病原菌抑制効果、ならびに各種施肥条件下での微 生物バイオマス変動など、多角的視点から土壌-植物-微生物の相 互作用を解析した。本研究は、微生物群集の構造・機能の理解を基 に、資材施用や病害管理を含む総合的な生産技術の確立に資する科 学的基盤の構築に貢献するものである。

アマゾン熱帯雨林におけるアグロフォレストリー(森林農法)

バナナと自然植物

土壌学

ハイオ度を用いた規範的(Pasarium and Rhizoctonia)が終

シン様

(600°C)

総数生主の発音的

Acqui blackhau (AB)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

(70°)

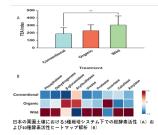
(70°)

(70°)

(70°)

(70°)

(70°)


(70°)

(70°)

(70°)

(70°)

アサイー園

【期待される効果・応用分野】

本研究により、バイオ炭が土壌微生物群集の多様性や機能性に与える影響が可視化されることで、植物の生育や病害抵抗性に及ぼす作用およびメカニズム解明に貢献します。これによりバイオ炭を用いた土壌改良技術の確立、持続可能な農業の推進が期待できます。バイオ炭は通常、農業廃棄物を原料としているため、バイオ炭使用が地域資源の循環利用を促進するという環境面での利点もあります。

さらに、農業土壌に存在する抗生物質耐性遺伝子(ARGs)の分布や伝播の実態を明らかにすることで、農業生態系における耐性菌のリスク管理や、公衆衛生への影響評価にもつながります。これらの研究成果により、環境に優しい施肥・防除技術の開発、有機農業や特別栽培農業への応用、さらには食品安全・水環境保全といった広範な分野への波及が期待できます。

【アピールポイント】

本研究の最大の強みは、「微生物学」「分子生物学」「生態学」「環境保全学」という複数の分野を横断した学際的なアプローチにあります。バイオ炭の機能性を土壌微生物群集(分子)レベルから生態系レベルまで多角的に解析することにより、作物生産性の向上だけでなく、環境負荷の軽減にも寄与する包括的な知見を提供します。

また、抗生物質耐性遺伝子の環境中における存在・拡散メカニズムを農業土壌という現場視点から調査することで、これまで不明瞭であった農業と耐性菌リスクの関係性に対して、新たな科学的根拠を提示することが可能です。

さらに、本研究室は附属農場や温室といった実践的な研究環境を備えており、基礎研究から応用研究、フィールド試験に至るまで一貫した研究体制を有しています。こうした研究環境と専門的知見を活かし、現場ニーズに即した実用性の高い技術提案に応用できる点も、本研究の大きなアピールポイントです。

【関連情報】

論文 1) M.O. Gomes & A.F. Cruz: Eurasian Soil Science 58(6), 82, 2025

- 2) Luiz E. B. et al.: Revista Caatinga 38(e12566), 1-8, 2025
- 3) A. F. Cruz et al.: Journal of Plant Nutrition and Soil Science, 187, 804-815, 2024
- 4) N.D. Organo et al.: The Philippine Agricultural Scientist 107(2) 133-143, 2024
- 5) A. F. Cruz et al.: South Asian Journal of Research in Microbiology, 18, 44-52, 2024

リサーチマップ: https://researchmap.jp/afc

研究室URL: http://eureka.kpu.ac.ip/~andre/pomology/indexAndre.html

ゲノム編集作物の実用化を加速する高効率植物組織培養用培地の開発

生命環境科学研究科・応用生命科学専攻 准教授 大坪 憲弘

キーワード: 花き、ゲノム編集、植物組織培養、組織培養用培地、形質転換、硫酸銅、カルス、不定芽

【研究概要】

ゲノム編集による実用性の高い作物の各種作出にあたっては、さまざまな品種・系統に広く適用できる効率的な組織培養・形質転換系を整備する必要があります。私たちの研究グループでは、トレニア、ユーストマ、ポインセチア等多数の花き園芸植物を材料に、組織培養用培地およびアグロバクテリウム法による形質転換条件の見直しを行い、一般的に用いられるMS培地と比較してカルス増殖および不定芽形成を大幅に効率化する新規基本培地組成を決定しました。培地に高濃度の硫酸銅を添加し、ゲル化剤として寒天とゲランガムの混合物、糖にスクロースとトレハロースの混合物をそれぞれ用いることで、形質転換のあらゆる過程で細胞の増殖と分化を促進し、高効率での形質転換体の取得を可能としました。

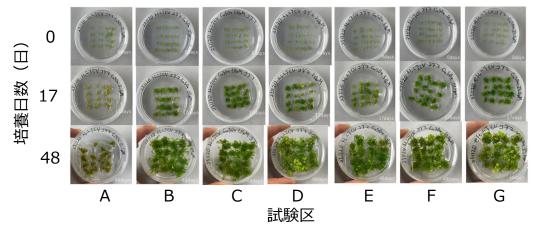


図1. トレニア不定芽誘導における至適硫酸銅濃度の検討 試験区Aは従来のMS培地

【期待される効果・応用分野】

植物の組織培養と形質転換効率の大幅な向上により、今後増加するゲノム編集作物の実用化を大幅に短期化し、省力化・低コスト化にも大きく寄与するだけでなく、植物の栄養繁殖性や分化全能性などの基礎研究にも新たなツールを提供するものとなります。

【アピールポイント】

栽培時の長期的な硫酸銅施用は生育障害や奇形をもたらすとの過去の報告から、組織培養用培地への高濃度添加に着目する研究はほとんど行われてきませんでした。本研究では、硫酸銅の一過的な施用が植物組織片からの脱分化・再分化いずれの過程でも促進的に働くこと、栽培時に低濃度に戻すことで表現型への影響を解消できることを示し、ゲノム編集作物の作出効率の向上と培養期間の短期化を実現しました。

【関連情報】

本研究は、JSPS·科研費 JP22547054「高濃度硫酸銅添加による栄養繁殖性強化を利用した高効率植物組織培養用培地の開発」によるものです。

研究室URL: https://kpuikushu.net/

リサーチマップ: https://researchmap.jp/nohtsubo/published_papers


骨格筋萎縮・運動機能における分子機序の解析

生命環境科学研究科·応用生命科学専攻 教授 亀井 康富

キーワード: 骨格筋、遺伝子改変マウス、筋萎縮、運動、サルコペニア、転写調節因子

【研究概要】

骨格筋はヒトの体重の約40%を占める人体で最も大きい組織であり、生活習慣病の予防やQOLの維持に大きな役割を果たす。骨格筋は適切な運動トレーニングと十分な栄養により肥大し、一方、寝たきりや加齢などによって萎縮する(サルコペニア)。我々は、転写調節因子FOXO1が骨格筋を引き起こす原因であることを示した骨格筋で発現が増加しミトコンドリア増加と不力を発現が増加しミトコンドリア増加と不力を発現が増加しミトコンドリア増加と不力を表現が増加しまりでよりでよりでは下OXO1とPGC1aに着目で、筋萎縮と運動能改善の分子機序解明を目指している。

【期待される効果・応用分野】

- ●FOXO1の制御下で、タンパク質分解、タンパク質合成阻害因子、分岐鎖アミノ酸の輸送体、脂質分解酵素など、さまざまな機能分子が働いていることが判明した。これらの経路は筋萎縮予防改善のための創薬や機能性食品開発の手がかりとなる。
- ●PGC1aが分岐鎖アミノ酸を含む様々な基質を利用してTCA回路を活性化し、運動時のエネルギー源とすることが示された。運動が骨格筋機能を活性化する分子メカニズムの一端であり、加齢などによる機能低下の予防・改善に繋がる手がかりとなる。

【アピールポイント】

- ●筋萎縮・筋機能低下はどのように予防・改善できるか?本研究では遺伝子発現調節・シグナル経路を標的として筋量やエネルギー代謝を制御できる(=筋萎縮と筋萎縮にともなう肥満を予防・改善する)食品成分(=機能性食品)の探索を可能とする。
- ●筋萎縮が起きやすい・起きにくいといった「体質」がある。これは骨格筋におけるエピジェネティクス制御(遺伝子配列の変化によらない制御)によるものではないか?エピジェネティクス制御に重要な DNAメチル化酵素を骨格筋特異的に過剰発現させると骨格筋の老化が観察された(iScience 2025)。これはサルコペニアのモデルとして有用である。

【関連情報】

論文:

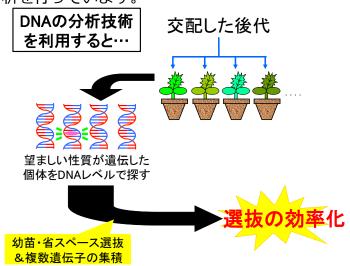
1.**Cell Reports** 44(8): 115963, (2025) 2.**iScience** 28(4):112144. (2025)

3.**Scientific Reports** 14(1):1780 (2024) 4.**FASEB Journal** 36(2): e22152, (2022)

研究室URL: https://nutrition.life.kpu.ac.jp/

リサーチマップ: https://researchmap.jp/kameiyasutomi

伝統作物の類縁関係の推定と遺伝解析


生命環境科学研究科·応用生命科学専攻 **** 教授 久保 中央

キーワード: 京野菜, 宇治茶, 品種識別, DNAマーカー

【研究概要】

府立大学の教員と京都府農林水産技術センター生物資源研究センター基礎研究部の職員を併任し、京野菜(カブヤダイコンを含むアブラナ科、カボチャなどのウリ科)や宇治茶を主な対象として遺伝子の分析を行っています。

DNAの分析データから類縁関係を推定し、これまで伝承レベルで詳細が不明だった伝統作物の来歴を解明したり、品種の識別を行っています。また、作物の形質をコントロールする遺伝子座(遺伝子が存在する染色体上の場所)を同定し、遺伝子座のデータから優良個体を選抜するDNAマーカーを作製して新品種の開発に役立てています。遺伝子の構造と進化に関する基礎研究も行っています。

【期待される効果・応用分野】

DNAを基にした分類から作物の来歴を明らかにすることで不明な個体・品種の類縁関係の推定や宣伝効果を期待することができます。また、選抜にDNAマーカーを利用することで、従来までの外観に基づく評価方法より早期かつ容易に形質を判別することができるようになります。

【アピールポイント】

農学や植物の生命科学系分野の中でも比較的実用に近い分野を研究しています。これまで様々な生物(ダイコン、カブ、ハクサイ、花菜、キュウリ、メロン、カボチャ、ニンジン、チャ、海藻のアカモク、根こぶ病菌など)を対象とした分類やDNAマーカー作製の実績があります。

【関連情報】

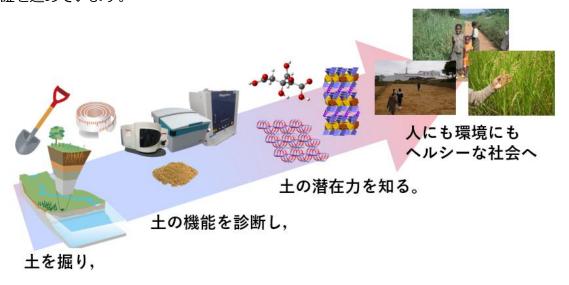
細胞丁学研究室URL

https://www2.kpu.ac.jp/life_environ/cell_genome_bio/

京都府農林水産技術センター生物資源研究センター(京都府農林水産部)URL

https://www.pref.kyoto.jp/shigenken/

Research Map (論文や特許 等の情報掲載) https://researchmap.jp/read0094691


土壌の健康診断技術の開発および治療方法の提案

生命環境科学研究科·応用生命科学専攻 准教授 中尾 淳

キーワード:ソイルヘルス、ミネラルバランス、X線、放射線、資源循環

【研究概要】

土壌は適切に管理しなければ劣化しますが、状態の悪化は10年単位でゆっくりと進むため見過ごされ、放置される傾向にあります。その結果、症状が顕在化した時には治療は容易ではなく、土壌の健康(ソイルヘルス)が損なわれると農作物の収量や品質とともに人の健康にも悪影響が生じることが懸念されています。我々は特に土壌のミネラルバランスに注目しており、X線や放射線を用いて土壌の状態を簡易かつ迅速に把握するための技術開発や、循環型資源を用いたバランス矯正方法の検証を進めています。

【期待される効果・応用分野】

土壌を診断する技術は、農地から農産物に運ばれるミネラルバランスを向上させるだけでなく、農地から大気や水への不要なミネラルの漏出を防ぐことに貢献します。産業廃棄物や食品廃棄物などの成分解析にも応用可能で、ある土壌に不足するミネラルを補う最適な循環型資源の選定などにも役立ちます。

【アピールポイント】

温暖化によるコメの高温障害や輸入エネルギー資源の高騰による農産物の価格上昇など、農業を取り巻く状況は厳しさを増しています。今こそ、土壌の潜在力を引き出すことで、省資源投入型の持続的かつヘルシー(人にも環境にも)な農業システムを確立していきましょう。

【関連情報】

論文 (1) Nakao, A. et al., Geoderma 385, 114889 (2021).

(2) Kurokawa, K. et al., Soil Sci. Soc. Am. J. 88, 1942–1958 (2024).

研究室URL: https://na4ka5.wixsite.com/kpu-soil-chemistry

リサーチマップ: https://researchmap.jp/vermiculite_xrd

昆虫多様性の保全、特に農業利用に関する探究

生命環境科学研究科·応用生命科学専攻 教授 中尾 史郎

キーワード:天敵利用・送粉利用・環境指標・希少種保護・生活史・植物防疫・農業 害虫防除・牛物間相互関係

【研究概要】

作物生産上で問題となる微小昆虫とその天敵動物の生理生態機能を利用した 害虫管理技術の開発、ならびに昆虫の系統進化と環境応答に根ざした環境指標性の利活用に関する基盤研究を行っています。

【期待される効果・応用分野】

- ●化学合成殺虫剤の使用を低減した農作物生産体系の実現。
- ●農地・遊休地・公園緑地などにおける生物多様性保全効果の評価と改善。

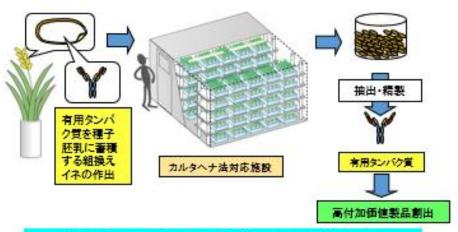
【アピールポイント】

未記載種や未活用資源を探索発見し、独自の機能調査を行ってきました。その 1つは商品化されました。分類学、系統進化学、生理生態学、生物間相互作用、 遺伝などを網羅した昆虫学の諸相を踏まえ、自律的かつ持続的な昆虫多様性保 全技術の創生普及を支援します。

【関連情報】

研究室URL: https://www2.kpu.ac.jp/life_environ/app_entom/nakao.html

リサーチマップ: https://researchmap.jp/read46


遺伝子改変技術を用いた植物の高度な利用に関する研究

生命環境科学研究科·応用生命科学専攻 教授 増村 威宏

キーワード:イネ種子、有用物質生産、遺伝子組換え、矮性イネ、経口ワクチン

【研究概要】

遺伝子組換え、ゲノム編集などの遺伝子改選伝子改変技術を駆使して、機能性タンパク質などでの質などでである。 田物質を種子にをでいる。 東京の開発など、植物での開発など、植物質を 産系の開発など、植物での を発表が、植物で の高度な利用を目もした研究を進めている。

矮性イネを用い有用タンパク質の高生産を実現する

【期待される効果・応用分野】

- ●ワクチン抗原やヒト抗体などの有用物質を高蓄積するイネの開発
- ●備蓄用のコメ型経口ワクチン、医療用を含む研究用のヒト抗体の生産

【アピールポイント】

極矮性イネ(背丈20cm程)を宿主として利用することで、閉鎖系の植物工場で遺伝 子組換えイネを年間通して多数栽培出来る技術を確立していること。

【関連情報】

論文:

MucoRice-CTB line 19A, a new marker-free transgenic rice-based cholera vaccine produced in an LED-based hydroponic system *Frontiers in Plant Science*, Vol.15 (2024), https://doi.org/10.3389/fpls.2024.1342662

研究室URL: https://www2.kpu.ac.jp/life_environ/genetic_eng/index.html

リサーチマップ: https://researchmap.jp/read0020364/?lang=japanese

農耕地土壌の「肥沃度」と「健康」の維持向上

生命環境科学研究科·応用生命科学専攻 教授 矢内 純太

キーワード:可給態養分、微生物活性、有機物、土壌の健康、土壌診断

【研究概要】

農耕地土壌は農業生産における基盤である。すなわち、土壌は作物に必要な養分と水を供給し、地上部を支える物理的基盤を与える。従って、土壌の養分供給能を表す土壌肥沃度は生産性を大きく規定する。また、土壌の健康は、食料生産に留まらず、土壌が持つ様々な生態系サービス(水分涵養、炭素貯留による地球温暖化抑制、生物多様性の維持など)の発揮程度を示す指標となっている。従って、農耕地土壌の肥沃度と健康を適切に評価しそれらを維持向上することは、食料生産の面でも環境保全の面でも喫緊の課題である。そのため、土壌肥沃度については、土壌のpHや粒径組成、鉱物組成などの一般理化学性と、窒素・リン・カリウムを始めとする植物の必須元素の可給態量等を定量評価し、それに基づいた評価とその規定要因の解明を進めている。一方土壌の健康については、不耕起あるいは緑肥栽培等に基づく「環境再生型農業」が、土壌の各種生態系サービスを駆動する土壌生物や土壌微生物を活性化することが知られている土壌有機物の蓄積量やその動態に及ぼす影響の解明を進めている。

図1 土壌養分が作物生育を決める

図2 日本農耕地の土壌窒素の形態別存在量とその割合 (Sano et al. 2004, SSPN)

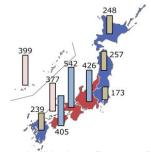


図3 日本農耕地土壌の非交換態カリウム濃度の 地域性 (Kitagawa et al. 2018, SSPN)

【期待される効果・応用分野】

食料生産と環境保全との両立を目指すため、農林水産省は令和3年に「みどりの食料システム戦略」を策定し、化学肥料の使用量の3割減と有機肥料の活用の増大を進めている。本研究は、その戦略の実現に大いに貢献し得るものである。また、「環境再生型農業」の有機物蓄積効果を詳細に明らかにできることで、より環境再生をポジティヴに捉える農法の日本(京都)におけるあるべき姿を提示することが期待される。従って、農業生産分野および環境保全分野に幅広く応用できることは確実である。

【アピールポイント】

本研究は、基本的な概念は普遍性の高いものであるが、具体的な状況やそれに基づく合理的管理法の提案などについては、日本および京都府のスケールごとに検討すべきものである。従って、本研究は、京都府における農業生産および環境保全に関わる諸問題に対し、幅広く貢献できる高いポテンシャルを持つことが期待される。

【関連情報】

総説:

- (1) 矢内純太 2024: 土壌肥沃度の時空間変動の解析と持続的農業への応用、日本土壌肥料学雑誌、95、253-256.
- (2) 矢内純太ら 2020:土壌肥沃度の長期的変動の評価と管理 パラダイムシフトの時代に 、日本土壌肥料学雑誌、91、99-105.
- (3) 舟川晋也・矢内純太 2019: ゼロ・エミッションの農業、農業および園芸、94, 21-24.

研究室URL: https://www.soilkpu.com/ リサーチマップ: https://researchmap.jp/read0095708